
Review of observational upper-ocean heat content estimates (Matt Palmer)

Semi enclosed Sea (The example of the Mediterranean Sea (Gabriel Jorda)

Workshop conclusion (Pierre-Philippe)

The Mediterranean as a test case for Heat budget closure

Med Heat content determined by surface HF and Gibraltar HF (+ other very minor contributions)

SATELLITES: Complex coastline but cloud free

IN SITU: ARGO + many national programs and coastal observatories

GIBRALTAR: Routinely observed by University of Malaga

MODELS: Several innitiatives already running (Mercator, My Ocean, Hymex, Med

Cordex). Forced and coupled ocean model with and without data assimilation

Accuracy of different estimates

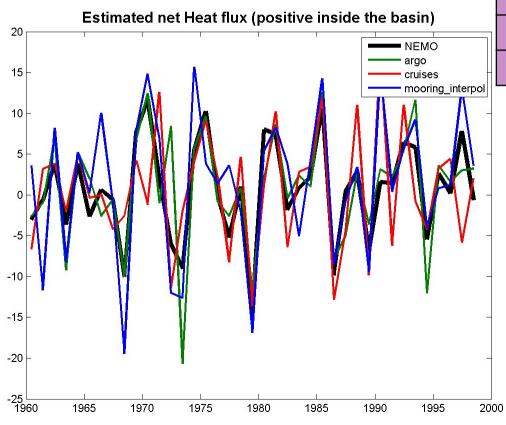
Surface Heat flux from Atmospheric Models

Table 4 Long term annual mean estimates for the different terms of the Mediterranean Sea heat budget for the RCMs driven by ERA40

	C4I	CNRM	DMI	ETHZ	ICTP	KNMI	METNO	METOHC	MPI	SMHI	OURA	UCLM	MEAN
ERA40 forced runs													
Q_{sw}	190 ± 2	190 ± 2	154 ± 2	157 ± 3	185 ± 4	165 ± 6	178 ± 3	214 ± 3	162 ± 2	190 ± 3	202 ± 3	180 ± 4	181 ± 18
Q_{LW}	78 ± 2	80 ± 2	70 ± 2	72 ± 2	74 ± 2	77 ± 4	100 ± 2	85 ± 1	90 ± 1	78 ± 2	80 ± 2	74 ± 2	75 ± 6
Q_{LH}	97 ± 4	90 ± 4	109 ± 4	108 ± 3	128 ± 5	88 ± 7	112 ± 4	100 ± 1	85 ± 5	90 ± 3	96 ± 6	91 ± 4	100 ± 13
Q_{SH}	10 ± 1	8 ± 1	15 ± 1	13 ± 1	22 ± 2	10 ± 2	15 ± 1	8 ± 1	9 ± 1	9 ± 1	18 ± 2	20 ± 2	13 ± 5
HB	$+5 \pm 3$	$+12 \pm 3$	-40 ± 3	-36 ± 3	-39 ± 4	-10 ± 3	-14 ± 3	$+21 \pm 3$	-22 ± 3	$+13 \pm 3$	$+8 \pm 3$	-5 ± 3	-9 ± 21

In the table Q_{SW} is the shortwave flux, Q_{LW} the longwave, Q_{LH} and Q_{SH} the latent and sensible heat fluxes respectively. The heat budget estimates have been calculated according to eq. (2). Values have all been converted to W/m²

Sánchez-Gómez et al., Clim Dyn 2011

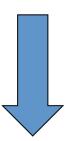

Ocean models

W/m ²	Mean	STD
ORCA	-3.83	3.34
OM8	-3.37	3.86
MITgcm	-2.70	4.77

Accuracy of different estimates

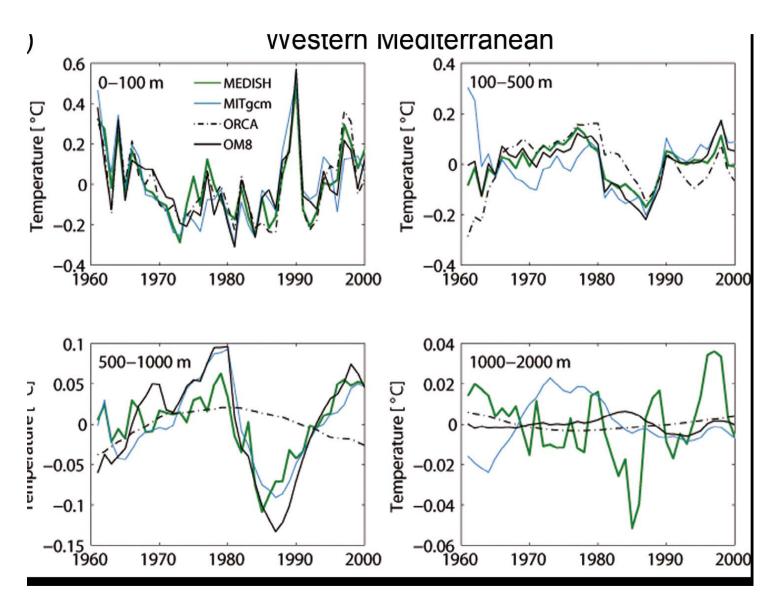
Med Heat Content as estimated from different observational networks Using a "virtual" reality from a numerical model – NEMOMED8

Estimated net Heat Flux (yearly data)

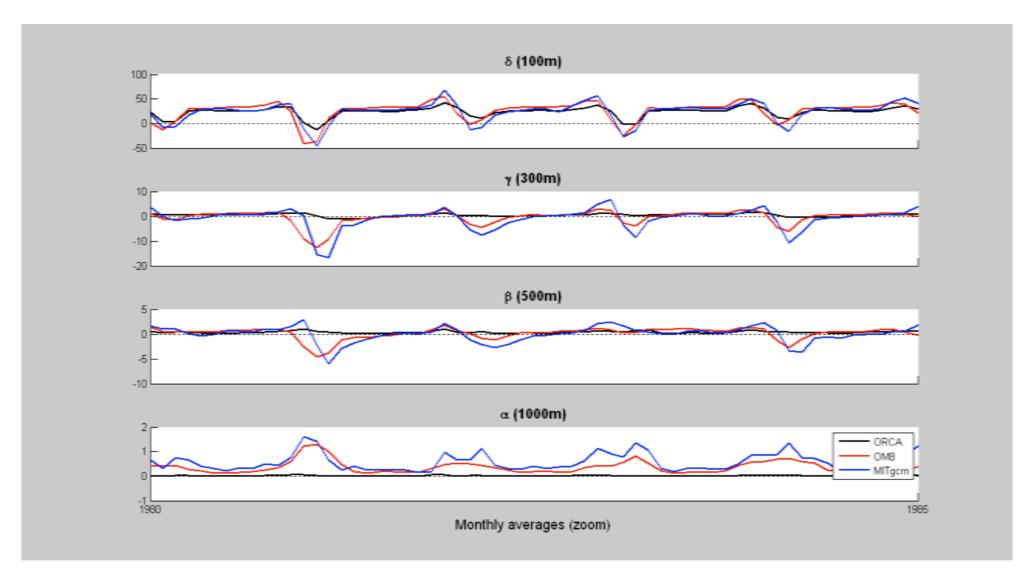

	RMSE (W/m²)	Correlation			
ARGO	4.11	0.81			
CTD	5.70	0.64			
MOORING	5.23	0.82			
Statistics from yearly time series					

With typical observational systems we could reach 5-6 W/m² of uncertainty for yearly estimates

Llasses et al., 2013


Accuracy of different estimates

Gibraltar HF uncertainty ~ 1-3 W/m²


We could get yearly indirect estimates of surface heat fluxes with un uncertainty of 5-7 W/m²

Models Performance at different layers

Calafat et al., 2012

Models Vertical heat transfer

Reasonable results can be obtained for the deeper layers if high resolution is used for ocean model and its forcings (temporal and spatial)