Review of observational upper-ocean heat content estimates (Matt Palmer) Semi enclosed Sea (The example of the Mediterranean Sea (Gabriel Jorda) Workshop conclusion (Pierre-Philippe) ### The Mediterranean as a test case for Heat budget closure Med Heat content determined by surface HF and Gibraltar HF (+ other very minor contributions) **SATELLITES:** Complex coastline but cloud free **IN SITU**: ARGO + many national programs and coastal observatories **GIBRALTAR**: Routinely observed by University of Malaga MODELS: Several innitiatives already running (Mercator, My Ocean, Hymex, Med Cordex). Forced and coupled ocean model with and without data assimilation ## **Accuracy of different estimates** ### **Surface Heat flux from Atmospheric Models** Table 4 Long term annual mean estimates for the different terms of the Mediterranean Sea heat budget for the RCMs driven by ERA40 | | C4I | CNRM | DMI | ETHZ | ICTP | KNMI | METNO | METOHC | MPI | SMHI | OURA | UCLM | MEAN | |-------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------| | ERA40 forced runs | | | | | | | | | | | | | | | Q_{sw} | 190 ± 2 | 190 ± 2 | 154 ± 2 | 157 ± 3 | 185 ± 4 | 165 ± 6 | 178 ± 3 | 214 ± 3 | 162 ± 2 | 190 ± 3 | 202 ± 3 | 180 ± 4 | 181 ± 18 | | Q_{LW} | 78 ± 2 | 80 ± 2 | 70 ± 2 | 72 ± 2 | 74 ± 2 | 77 ± 4 | 100 ± 2 | 85 ± 1 | 90 ± 1 | 78 ± 2 | 80 ± 2 | 74 ± 2 | 75 ± 6 | | Q_{LH} | 97 ± 4 | 90 ± 4 | 109 ± 4 | 108 ± 3 | 128 ± 5 | 88 ± 7 | 112 ± 4 | 100 ± 1 | 85 ± 5 | 90 ± 3 | 96 ± 6 | 91 ± 4 | 100 ± 13 | | Q_{SH} | 10 ± 1 | 8 ± 1 | 15 ± 1 | 13 ± 1 | 22 ± 2 | 10 ± 2 | 15 ± 1 | 8 ± 1 | 9 ± 1 | 9 ± 1 | 18 ± 2 | 20 ± 2 | 13 ± 5 | | HB | $+5 \pm 3$ | $+12 \pm 3$ | -40 ± 3 | -36 ± 3 | -39 ± 4 | -10 ± 3 | -14 ± 3 | $+21 \pm 3$ | -22 ± 3 | $+13 \pm 3$ | $+8 \pm 3$ | -5 ± 3 | -9 ± 21 | In the table Q_{SW} is the shortwave flux, Q_{LW} the longwave, Q_{LH} and Q_{SH} the latent and sensible heat fluxes respectively. The heat budget estimates have been calculated according to eq. (2). Values have all been converted to W/m² Sánchez-Gómez et al., Clim Dyn 2011 #### **Ocean models** | W/m ² | Mean | STD | |------------------|-------|------| | ORCA | -3.83 | 3.34 | | OM8 | -3.37 | 3.86 | | MITgcm | -2.70 | 4.77 | ## **Accuracy of different estimates** # Med Heat Content as estimated from different observational networks Using a "virtual" reality from a numerical model – NEMOMED8 ### **Estimated net Heat Flux (yearly data)** | | RMSE (W/m²) | Correlation | | | | |------------------------------------|-------------|-------------|--|--|--| | ARGO | 4.11 | 0.81 | | | | | CTD | 5.70 | 0.64 | | | | | MOORING | 5.23 | 0.82 | | | | | Statistics from yearly time series | | | | | | With typical observational systems we could reach 5-6 W/m² of uncertainty for yearly estimates Llasses et al., 2013 ### **Accuracy of different estimates** Gibraltar HF uncertainty ~ 1-3 W/m² We could get yearly indirect estimates of surface heat fluxes with un uncertainty of 5-7 W/m² ## **Models Performance at different layers** Calafat et al., 2012 ### **Models Vertical heat transfer** Reasonable results can be obtained for the deeper layers if high resolution is used for ocean model and its forcings (temporal and spatial)