Trends in Antarctic Surface Climate and the Role of the Atmospheric Circulation

David P Schneider, Clara Deser, Yuko Okumura

CLIVAR Southern Ocean Panel Meeting, 20 October, 2011

Outline

- Tropical teleconnections and their impact in Antarctica
- Recent trends in Antarctic surface climate
- Are the trends explained by changes in the atmospheric circulation?

Teleconnections: Rossby Waves

Karoly (1989)

Southern Annular Mode (SAM)

Figure by Ryan Fogt

Regressions: SAM index and SOI

Schneider et al. (acc. pending minor revisions)

Data Sets

- Antarctic stations (air temperature), ~1958-present
 - Antarctic ice cores (annually resolved stable isotopes), ~1958-1999 for this study, but available further back
- GPCP Precipitation, 1979-present
- NOAA ERSSTv3b, SST
- HADSLP2, Precipitation
- NCEP R2 Reanalysis (2-m winds, 850hPA height, zonal winds, 3D temperature)
- Hulme et al. (1998) Precipitation, gridded station data ~1900-1998, substitute for GPCP

Data Sets

Gridded Antarctic Temperature Reconstructions:

- NASA GISTEMP (Hansen et al., 2010)
- Chapman and Walsh (2007)
- Monaghan et al. (2008)
- Steig et al. (2009)
- O'Donnell et al. (2011)

Other Stuff

- SAM Index (mostly use Marshall (2003))
- SOI Index (constructed from HadSLP2)
- Niño3.4 Index (constructed from ERSSTv3b)
- Sea Ice (extent) Index, NSIDC
- Sea Ice Concentration (Hurrell et al., 2008)
- Ozone (Jean-Francois Lamarque)
- Antarctic temperature from AVHRR (Comiso)
- Tropospheric temps from MSU (Johanson and Fu, 2007)
- CCSM4 Preindustrial Control Runs
- AMIP Runs with CAM3

One-point Regressions, Antarctic stations

Fields: SST, SLP, Precip Schneider et al. (acc. pending minor revisions)

One-point Regressions, Antarctic stations

Fields: SST, SLP, Precip Schneider et al. (acc. pending minor revisions)

So Far...

- Peninsula stations, such as Faraday/Vernadsky, exhibit strong correlations with tropical SSTs and with the Rossby wave-train in austral spring
- East Antarctic stations, such as Davis, exhibit significant correlations with tropical SSTs in austral summer; otherwise east Antarctic stations are dominated by SAM
- SAM exhibits ENSO-like patterns in SST, SLP and precip in austral summer; no tropical connections evident in other seasons

Another side of SAM

Latitude-height regressions with Davis SAT, Niño3.4 and SAM in zonal wind and temperature for DJF

Teleconnections: Supporting work

- Tropical Antarctic teleconnections also evident using ice cores (Schneider et al., submitted)
- Tropical Antarctic teleconnections explain the dominant decadal scale variability in Antarctica (Okumura et al., in prep)
- SH ENSO teleconnections are well simulated in CCSM4 (Deser et al., in press)
- ENSO teleconnections dominate the variability of Antarctic sea ice in CCSM4 (Landrum et al., submitted)

One-point Regressions, ice cores

Fields: SST, SLP, Precip Schneider et al. (acc. pending minor revisions)

Decadal Variability

SVD analysis of ice cores & tropical SSTs, 1900-1981

Correlations: SST, ice core, precip (wet/dry)

Okumura et al. (in prep)

El Niño minus La Niña Composites in CCSM4

ENSO variance in sea ice in CCSM4

TS, SIC regressed onto Niño34.

Landrum et al. (submitted)

Deser et al. (in press)

TRENDS

Observed trends in Ozone, SAM and Sea Ice

Magnitude of trends starting in 1979 and their significance

Surface temperature change (2000s minus 1960s)

Latitude

Antarctic Surface temperature change

Dataset GISTEMP MONAGHAN STEIG CHAPMAN O'DONNELL

timespan 1958-2010 1960-2009

Domain 64°S-90°S Antarctic land 1958-2006 Antarctic land 1958-2002 Antarctic land 1958-2006 Antarctic land

Trend °C/decade 0.13±0.07 0.19±0.14 0.14±0.13 0.07 ± 0.11

0.08±0.08

Austral autumn (MAM) & spring (SON)

Trends 1979-200x

Austral summer (DJF) & winter (JJA)

Trends 1979-200x

More about Spring trends

Austral spring (SON) average temperature & sea ice concentration

Temperature trends, relation to sea ice trends

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Temperature trends, relation to sea ice trends

Trends congruent with PSA, SAM and sea ice: SON

PSA 'wins' in SON: Are these trends explained by SSTs?

1979-2008 trends

- Observed
- CAM3, observed global SST & sea ice prescribed
- CAM3, observed tropical SST prescribed, climatology elsewhere

0.2 0.4 0.6 0.8

-0.8 -0.6 -0.4 -0.2 0

Faraday, WAIS & western Pacific SSTs warming together

NCAR

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Trends congruent with PSA, SAM and sea ice: JJA

Trends congruent with PSA, SAM and sea ice: MAM

Trends congruent with PSA, SAM and sea ice: DJF

Summary

- Tropical signals are prevalent in Antarctic climate, evident in station data, ice cores, and models
- Mechanisms other than Rossby waves may be at work to explain SAM-ENSO connections in summer
- Antarctica is not cooling
- Strongest warming is over the western Peninsula, but is also significant over West Antarctica in spring
- Still some cooling evident and areas of sea ice increase, especially in the Ross Sea Sector in autumn
- PSA patterns, tropical forcing are the best explanations for spring warming
- SAM best explains lack of warming in summer and autumn

