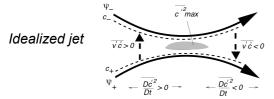
Eddy lifecycles and storm tracks

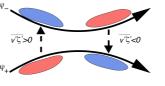

Ric Williams¹, Chris Wilson^{1,2} and Chris Hughes² Department of Earth and Ocean Science, University of Liverpool, U.K.
Proudman Oceanography Laboratory, Liverpool, U.K.

1. Motivation

Eddies have characteristic life cycles:

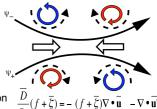
- · as tracer variance grows, eddy tracer fluxes are directed down gradient
- as variance decays, eddy tracer fluxes are directed up gradient

c is a conserved tracer, such as CFCs or potential vorticity


Tracer equation

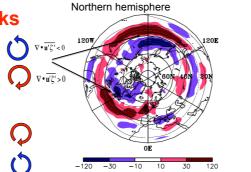
$$\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = F$$

Tracer variance


$$\frac{\overline{D}(\overline{C'^2})}{Dt} + \overline{\mathbf{u}'C'} \bullet \nabla \overline{C} = \overline{F'C}$$

b) eddy vorticity flux for idealised jet

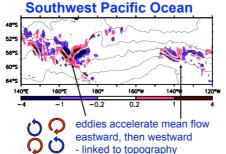
zeta is vorticity

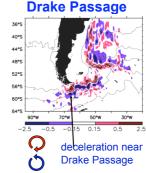

Vorticity equation

Southern hemisphere

2. Atmospheric Storm tracks

- Eddies grow at the entrance of storm tracks, providing a downgradient heat flux and an eastward acceleration
- · Eddies decay at the exit and downstream of a storm track, providing a westward acceleration, sometimes leading to blocking




Diagnostics of high-pass (<7days) eddy relative vorticity convergence at 250-hPa (10-12 s-2) for 1992-2002 from ERA-40

3. Eddy forcing in the Southern Ocean

Southwest Indian Ocean eddies accelerate mean flow eastward at about half of planetary forcing

Diagnostics of high-pass (<100 days) eddy relative vorticity convergence (10⁻¹² s⁻²) for 1992-2002 from from altimetry on 1/3° grid.

Dashed lines denote regions of 90% significance (a Monte Carlo technique where the original data is Fourier transformed, random phase applied, then a new time series constructed, 800 times)

4. Implications

- · Eddies provide sequence of down-gradient and up-gradient tracer fluxes;
- Need to consider life cycle of eddies via evolution of tracer variance:
- Expect life cycles of ocean eddies to be reflected in coherent patterns, such as storm tracks.

References

Williams, R.G., C. Wilson and C.W. Hughes, 2007; Ocean and atmosphere storm tracks: the role of eddy forcing. Journal of Physical Oceanography, 37, 2267-2289.

Also see: Hughes, C.W. and E.R. Ash, 2001: Eddy forcing of the mean flow in the Southern Ocean. J Geophys. Res., 106, 2713-2722.

Wilson, C. and R.G. Williams, 2006: When are eddy tracer fluxes directed down gradient? Journal of Physical Oceanography, 36, 2, 189-201.