Ice Shelf Calving and Ablation: an ice-shelf modeler's perspective on ocean/ice coupling.

Todd K. Dupont

Dept. of Earth System Science

UC Irvine

Collaborators: R.B. Alley, R. Walker, B.R. Parizek, D. Lindsey, I. Joughin, H.J. Horgan, S. Anandakrishnan, K.M. Cuffey and Jeremy Bassis

What Is Calving?

- The process by which ice breaks off of the terminus of glaciers and ice shelves
- Usually into water
- Can be from a grounded, but partially submerged, ice cliff
- Or from a floating boundary a.k.a. an ice front.

Why Look at Calving? Glaciological perspective:

- Calving is the dominant form of ice loss from Antarctica, and about half of loss from Greenland
- Calving rate is a big control on ice-shelf geometry
- Longer ice shelves will buttress outflow of grounded ice more
 - More lateral drag (bigger cork)
 - Greater likelihood for local grounding (ice rises)
- Calving impacts the ice-sheet mass balance and thus sea-level variation

Why Look at Calving? Broader perspective:

- Icebergs are floating sinks for latent and sensible heat in the ocean, and their melting should impact the local salinity (stratification?)
- Evidence suggests a strong relationship between large changes in calving and concomitant climate changes (e.g., Heinrich events)
- Calving dynamics governs the movement of the horizontal boundary between ocean and ice-shelf (i.e., the boundary is not necessarily stationary)

Calving Laws

- •Modeling calving "right" is hard fracture mechanics, on small scales, lots of inputs
- So we attempt to "cheat", deriving some sort of calving law
- •Broadly two types:
 - Calving criteria dictates where calving will occur - front moves to where criteria is met
 - Calving rate governs the rate of loss at the front - front moves based on velocity to calving-rate difference

Calving Laws

- •Calving criteria examples: magic thickness (e.g. 50 m) or height above buoyancy (Vieli et al., 2002), or crevasse-depth to sea level (Benn et al., 2007), or damage (Pralong and Funk, 2005)
- •Calving rate examples: rate follows water depth or height above buoyancy (e.g., Brown et al, 1982 and Sikonia, 1982), or strain-rate

- Empirical Calving "Law"?:
 •Considering cold, floating termini;
- Looking for the zeroth-order relationship from velocity data
- It would be nice if the relationship depended on variables we already use in models
- Hypothesis: the tendency for ice shelves to fall apart (the near-front spreading rate) controls the rate at which they fall apart (the calving rate).

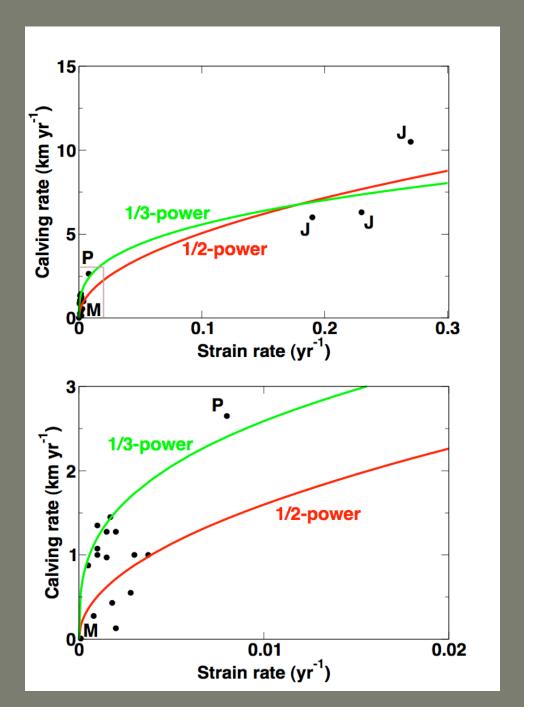
Width and thickness?

Procedure:

- Assemble ice velocity data, primarily from inSAR
- Measure long. stretching rate about one icebergwidth from the front, especially near center-line of shelf
- Measure "calving rate" (assume s.s. not so crazy...);
- Plot up the results; do they match the hypothesis?

Calving Law

Whole data set. Positive slope is dominated by Jakobshavn (shown for three different times; J).

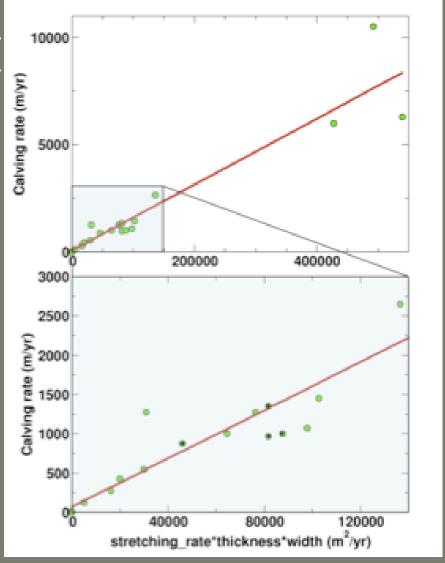

The square-root relation is consistent with fits to various subsets of the data.

Cube root works too.

Plotted line is: $c=1.6x10^{4*}u_x^{1/2}$

Explain approx. 90% of the variance

Blow-up of low-strain-rate data. Pine Island (P) and McMurdo (M) dominate. Omitting them leaves a positive-slope relation (noisy, w/ lower confidence).


Calving Law - Including Thickness and Width

Intuition and data suggest that thicker and wider ice fronts experience faster calving

Best fit curve is: $c=0.022(Hwu_{\star})^{0.975}$

Plotted is: c=70 m/yr + 0.015 Hwu_x

Both explain 89% of the variance

Can we use this calving-rate law?

- Limitations of the law
 - empirical correlation (inspired by phys. intuition)
 - noisy
 - essentially 1-d, though generalizing should be easy
 - continuous, not episodic we won't predict events
 - No water-filled crevasses no Larsen ice-shelf collapse
 - Won't replicate Jakobshavn where ice-front torque seems to be important

But say it's of heuristic value...

Question: What might the <u>dynamic</u> consequences be?

Numerical Experiments

- Implement the calving law in a simplified model of an ice shelf
- Allow the ice front to migrate
- · Is there a equilibrium ice front position?
- · Is this equilibrium stable or unstable?

Model in brief

1-d, strait-sided (for now), w/ a stretching long. coordinate

$$\eta \equiv \frac{x}{x_{if}(t)}$$

Ice-front balance:

$$\partial_t x_{if} = u_{if} - c = u_{if} - A_c \left(\partial_x u |_{x_{if}} \right)^{\frac{1}{2}}$$

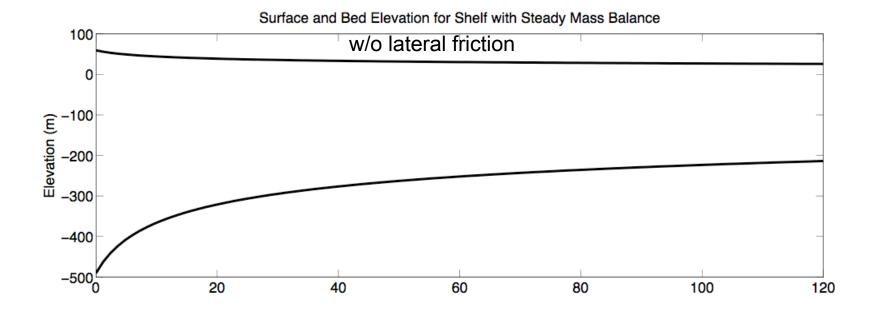
Mass-balance or thickness-evolution equation:

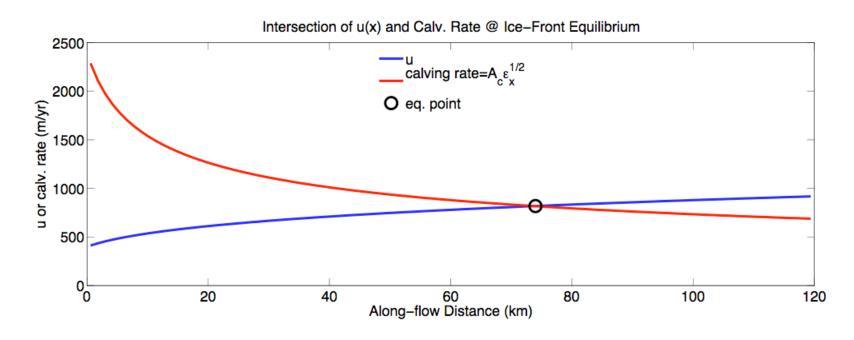
- -mapped from t,x to t,η space
- -neglects accumulation/ablation (for now)
- -bc: const. inlet thickness

$$\partial_t h = \eta \partial_t x_{if} \frac{1}{x_{if}} \partial_{\eta} h - \frac{1}{x_{if}} \partial_{\eta} (uh), \quad 0 \le \eta \le 1$$

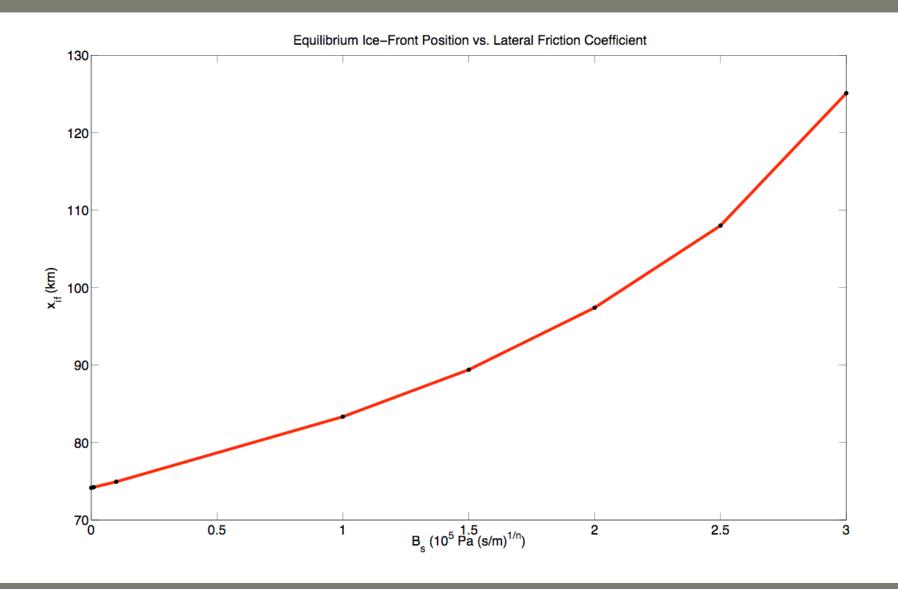
Stress-equilibrium equation:

- -depth and width-integrated MacAyeal/Morland eqn
- -lateral friction treated as boundary-layer phenom.
- -bc's: ice front stretching condition, const. inlet velocity

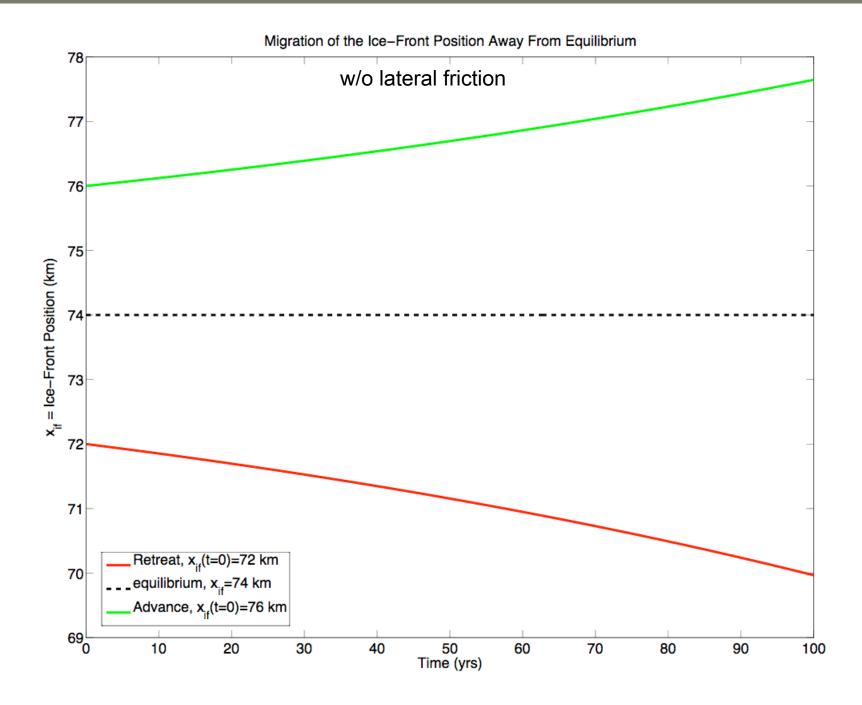

$$\frac{1}{x_{if}}\partial_{\eta}\left(4hv\frac{1}{x_{if}}\partial_{\eta}u-\frac{\rho_{i}g}{2}h^{2}\right)=-\frac{\rho_{i}}{\rho_{sw}}\rho_{i}gh\frac{1}{x_{if}}\partial_{\eta}h+\frac{h}{L_{y}}\gamma_{s}(u)\ u,\quad \gamma_{s}\equiv B_{s}\left|u\right|^{\frac{1-n}{n}}$$


Parameter Values

parameter	value (units)
A_c	$1.6 \times 10^4 (\text{m s}^{-1/2})$
g	9.81 (m s ⁻²)
ρ_i	917 (kg m $^{-3}$)
ρ_{sw}	$1028 (\text{kg m}^{-3})$
B_i	$1.5 \times 10^8 (\text{Pa s}^{\frac{1}{n}})$
n	3
h_0	550 (m)
u_0	400 (m yr ⁻¹)
$L_{\rm y}$	30 (km)

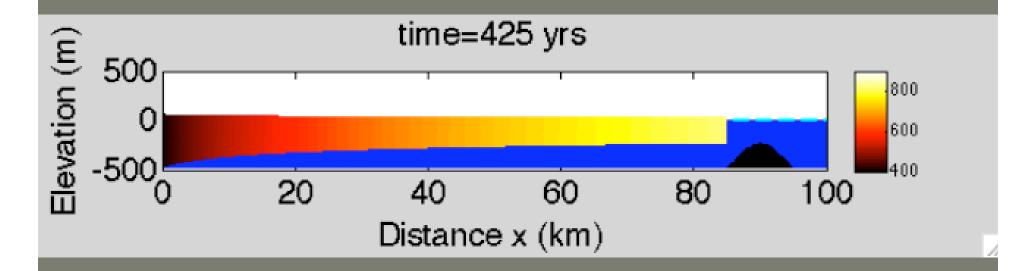

Finding Equilibrium

- For what ice front position is the system at equilibrium?
 - Steady thickness (mass-balance or thickness-evolution eqn)
 - Steady ice front balance
- · Straight forward procedure:
 - Hold ice front at a chosen value
 - Let the mass-balance eqn. come to eq.
 - What is the ice-front balance?
 - Change ice front pos. accordingly and iterate
- · Easier for shelves w/o lateral friction
 - Plot $\mathbf{u}_{\mathbf{x}}$ vs u for a steady (and analytic) profile and see where it crosses the calving-law curve.



Equilibrium Lengthens w/ Lateral Friction

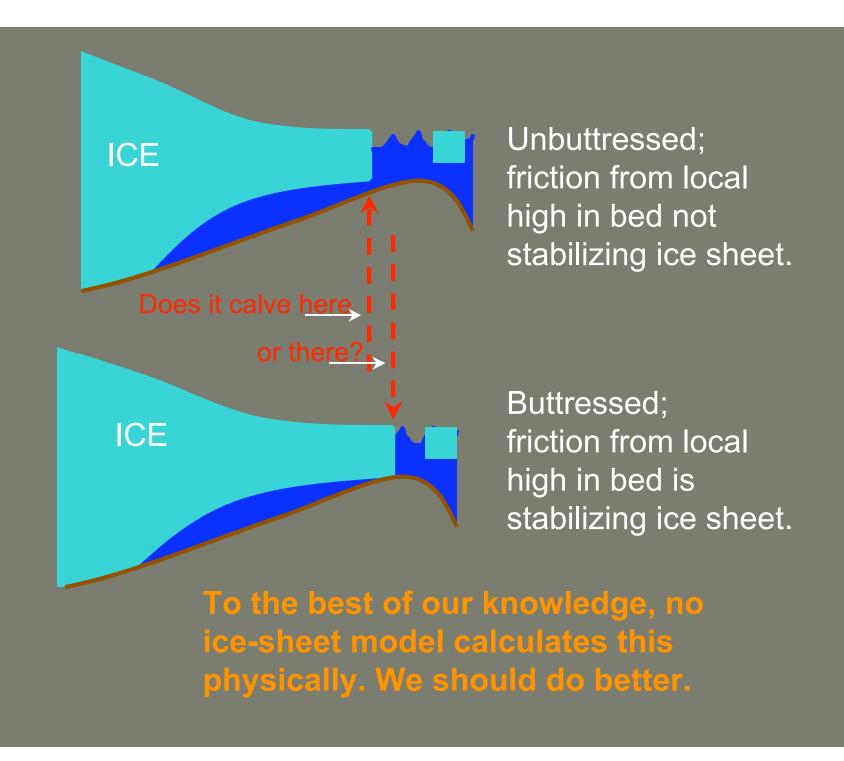
Stability


- Found an ice-front position where transient terms go to zero (equilibrium) w/ and w/o lateral friction
- Question: Is that position stable?
 - Perturb the ice front position from this equilibrium value and see how the system evolves
 - Return to equilibrium position (stable) or no (unstable)

Results

- The equilibrium ice-front position is unstable for $c \propto u_x^{1/2}$
- · This is also true when lateral friction is included surprising?
 - Regardless of lateral friction, a retreating ice front is thicker (--> more strain-rate) and slower
- Instability remains w/ thickness and width-dependent calving law Given the apparent quasi-steady positions of real shelves, what's wrong?
 - Law?
 - Implementation?
 - Scenarios? <-- no variable width, no local grounding

Including local grounding


So local shoals can allow for quasi-steady behavior

Concluding Questions

- Will along-flow width variation introduce stability? <-preliminary exp's say yes
- How do we implement this calving-rate law, or a criterion-based law, in a 2-d or 3-d model? <-- principle strain axes for 2-d?
- Are fixed mesh approaches doomed in the face of a moving boundary? <-- semi-lagrangian easier?
- Do we need to get ice-front melting (ocean/ice coupling!) involved?

