WGOMD Workshop on High Resolution Ocean Climate Modeling Session 2: Ongoing work – State-of-the-Art Simulations 07 Apr 2014, Kiel, Germany

Current efforts of ocean-climate modeling using highresolution ocean models in JMA/MRI

Hiroyuki Tsujino (JMA/Meteorological Research Institute)

1. Very brief summary of high-resolution simulations at JMA/MRI

Three model configurations, all based on the nominal 1-degree model used for CMIP5/COREs (MRI.COM)

I. Nesting 10 km resolution two regional models (subtropical North Atlantic and Pacific Ocean) for the Global Ocean

- An optional oceanic component for CMIP6
- Technique may be applicable to other regions that need high-resolution

II. Hierarchically nesting 10 km and 2 km models in the western North Pacific Ocean

- Downscaling toward Japan (designed as an operational system)
- Submesoscale processes in 2km model are also of scientific interest

III. 10 km resolution global ocean model

Oceanic component for post CMIP6 (currently forced by COREs)
(Our intention is to "skip" the 20 km resolution)

2. To what scientific questions are our high-resolution simulations applied?

General

- Impacts of mid-latitude Jets and Fronts on reproducibility of modeled climate
- Impacts of well resolved passage flow/transport (Indonesia, Florida, etc.) on regional/global climate
- Role of mesoscale eddies on energetics and quasi-steady balance of the global ocean

Regional (around Japan / North Pacific Ocean)

- Long-term variation of the Kuroshio path bimodality south of Japan
 - ... Is it affected by large-scale climate variability?
- Mechanism of formation and variability of Jets and Fronts in the Kuroshio/Oyashio extension region in the western North Pacific

3. The main challenges we see to progress in high-resolution modeling

Improvement in the representation of marginal seas and boundary regions

- Level of requirement on realism is getting high
- Additional processes in the coastal region: Explicit inclusion of tides and/or appropriate parameterization for tidal mixing on the shelf seas will be necessary

Appropriate choices of SGS mixing parameterization, advection schemes (tracer and momentum), and forcing methods

- Our current choice: Prather SOM scheme for tracer advection, Arakawa Jacobian (B-grid), bi-harmonic Smagorinsky-like viscosity, GLS turbulence closure, parameterization of background vertical mixing due to breaking of internal waves / tides
- Sensitivity to the choice of "relative" or "absolute" wind for surface stress

<u>Technical issues: Optimization of algorisms and data transfer</u> <u>between MPI processes, robust nesting method, etc.</u>

4. A list of the questions we would like discussed during the meeting

- Do features of the modeled climate modified in general manners when the oceanic fronts and eddies are resolved?
 - We are particularly interested in the impacts of mid-latitude jets, fronts, and western boundary currents on overall representation of climate
 - Do we really need to increase the resolution globally?
- What is the most appropriate horizontal viscosity parameterizations for realistic high resolution models?
 - Should mesoscale / sub-mesoscale eddy resolving models take different approach?
 - Side boundary conditions (slip/no-slip)
 - Drag effect of wind stress on mesoscale eddies may be comparable to that of horizontal viscosity parameterizations
- How do sub-mesoscale processes affect the climate system?
 - Is it enough to parameterize them in the mesoscale eddy resolving ocean models?
 - Or should we eventually step into "sub-mesoscale resolving global model" in the near future?

