John Marshall
Massachusetts Institute of Technology

John Marshall
Massachusetts Institute of Technology

1. Climate Response Functions (CRFs)

John Marshall
Massachusetts Institute of Technology

- 1. Climate Response Functions (CRFs)
- 2. Studying CRFs using ocean-only models

John Marshall
Massachusetts Institute of Technology

- 1. Climate Response Functions (CRFs)
- 2. Studying CRFs using ocean-only models
- 3. Proposal for a CORE follow-on: explore/isolate the role of ocean dynamics in setting the form of CRFs but in an ocean-only context

Climate Response Functions

Climate Response Functions

GHG Response Functions

Run out coupled A-O-ICE climate model to equilibrium.

Then instantaneously perturb GHG forcing and study evolution to new equilibrium

GHG Response Functions

Run out coupled A-O-ICE climate model to equilibrium.

Then instantaneously perturb GHG forcing and study evolution to new equilibrium

GHG Response Functions

Run out coupled A-O-ICE climate model to equilibrium.

Then instantaneously perturb GHG forcing and study evolution to new equilibrium

Gregory, 2000; Winton et al, 2012; Kostov et al, 2014

Fast timescale $au_1 pprox \lambda + Q$ - few years Slow timescale $au_2 pprox \lambda Q r/(\lambda + Q)$ - decades

Regional GHG response functions

Regional GHG response functions

Regional GHG response functions

Delayed warming in the SH, accelerated warming in NH

Ocean-only calculation

Replace 2-box model with full ocean GCM driven following CORE1 protocol following Griffies et al (2009)

Carry out a 'climate change' experiment:

- Abrupt, uniform surface forcing of F = 4 W/m² everywhere
- ullet Spatially-invariant radiative feedback of $\lambda=1 {
 m Wm^{-2}\,K^{-1}}$

Spatial pattern of warming

Temperature change (°C) after 100 years

Spatial pattern of warming

Temperature change (°C) after 100 years

Energy accumulation, ocean storage & transport

Active vs Passive

Other kinds of forcing

Other kinds of forcing

Other kinds of forcing

Wind forcing

Wind forcing

How can we explore/isolate the role of ocean dynamics in setting the form of CRFs but in an ocean-only context?

How can we explore/isolate the role of ocean dynamics in setting the form of CRFs but in an ocean-only context?

1. Integrate the ocean model out toward equilibrium starting from a climatological ocean state of temperature and salinity using the CORE1 protocol set out in Griffies et al (2009).

- 1. Integrate the ocean model out toward equilibrium starting from a climatological ocean state of temperature and salinity using the CORE1 protocol set out in Griffies et al (2009).
- 2. The air-sea fluxes computed from bulk formulae and the SST fields of the control integration are stored as diagnosed 'data'.

- 1. Integrate the ocean model out toward equilibrium starting from a climatological ocean state of temperature and salinity using the CORE1 protocol set out in Griffies et al (2009).
- 2. The air-sea fluxes computed from bulk formulae and the SST fields of the control integration are stored as diagnosed 'data'.
- 3. Starting from the equilibrium state, we introduce an instantaneous perturbation to the stored air-sea fluxes in a manner that represents GHG warming thus:

$$\mathcal{H} \longrightarrow \mathcal{H}_c + \mathcal{H}_{anthro}$$

- 1. Integrate the ocean model out toward equilibrium starting from a climatological ocean state of temperature and salinity using the CORE1 protocol set out in Griffies et al (2009).
- 2. The air-sea fluxes computed from bulk formulae and the SST fields of the control integration are stored as diagnosed 'data'.
- 3. Starting from the equilibrium state, we introduce an instantaneous perturbation to the stored air-sea fluxes in a manner that represents GHG warming thus:

$$\mathcal{H} \longrightarrow \mathcal{H}_c + \mathcal{H}_{anthro}$$

4. Damp SST anomalies at a rate set by a climate feedback parameter.

$$\frac{D_{res}}{Dt} \left(T_{c} + T_{anthrs} \right) = Q \left(\mathcal{H}_{c} + \mathcal{H}_{anthrs} \right) - \gamma \left(SST - SST_{c} \right)$$

Spatial pattern of warming

Temperature change (°C) after 100 years

