High-resolution coupled modelling at CERFACS (CNRM/CERFACS CMIP5 group)

Sophie Valcke, Marie-Pierre Moine, Eric Maisonnave, Laurent Terray et al.

Thanks to Thierry Penduff for presenting!

Current state of the art simulations at CERFACS

Current model: CERFACS-HR, high-resolution ESM prototype

- ARPEGE V5.3 T359/31L (OASIS3-MCT) NEMO V3.4 ORCA025/75L
- With climatological sea-ice, used in PRACE project SPRUCE (27 Mcore-hours on Bullx Curie in 2013) for seasonal prediction.
- •LIM2 sea-ice model activated and currently used to perform a full set of decadal predictions 1993-2009 initialized from GLORYS ocean reanalysis.
- Performances: 512 cores for NEMO, 64 cores for ARPEGE (~load balanced)
 - 2. simulated-year/day, 3800 cores-hours/simulated year
- To be used in EU FP7 projects: IS-ENES2, PREFACE and SPECS:
 - control + historical + decadal: 17 dates x 10 members x 10 years
 - 3400 simulated years and 133 TB of data
 - supported by PRACE : HiResClim I & 2 (20 M cores-hours at BSC).

Next model: CNRM-CM6 HR, to be used in CMIP6/HIRESMIP

ARPEGE V6 T359/91L – (OASIS3-MCT) - NEMO V3.6 ORCA025/75L

New atmospheric physics, surface scheme, ice model

Scientific Questions

- Sensitivity of large-scale variability modes to horizontal and vertical resolution (ENSO, NAM/SAM, AMV/PDV)?
- What is the influence of small-scale SST fronts on the atmosphere locally and is there any remote influence (storm-track)? Does an explicit representation of smallscale air-sea coupling matter for climate questions?
- Are climate sensitivities (including hydrological ones) depending on resolution (role of ocean eddies for instance)?

Main Challenges

- Improve the physical understanding of air-sea coupling at small-scale (need to go to sub-meso scale for climate problems?)
- Strong need for observational data sets needed to evaluate high-resolution models at small scale. Do they exist?
- Technical challenges:
- 1. Weak throughput on HPC machines (ok for ensemble runs, not for PiCtrl ones): need to make models run more efficiently
- 2. Post-processing: amount of data exp. Increasing, data mining, transfer strategies, networks

Questions to be discussed at the meeting

- How to ensure consistency between horizontal and vertical resolution (in each coupled model component) and between the resolution of the ocean, sea-ice and atmosphere models?
- The issue of coupling with sea-ice models
- Identify the model biases (not just mean state, variability too) that are the most sensitive to resolution
- What are the best metrics to assess improvement due to increase in resolution?
- Use of stochastic physics to represent unresolved scales